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A Bayesian approach to management
advice when stock-recruitment
parameters are uncertain

where Mis the instantaneous rate of
natural mortality, F' =F 1M, p is the
proportionality term in the Cushing
stock-recruitment relationship, and
K" =l/[M(a,. - ao)] (which can be in­
terpreted in this model as the pristine
ratio of growth to recruitment). The
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eter values given and fixed) modified
by a random error term. Important
early examples of the latter approach
include Ricker (1958), Larkin and
Ricker (1964), and Tautz et al. (1969).
Ludwig and Walters (1982) and
Mangel and Clark (1983) incorporate
both approaches in a systematic fash­
ion which makes the distinction espe­
cially clear.

(1)

1

F [(E-) (l+K"+F')] l-q
M (1+F')2 '

Y(F) =

The basic model
Thompson (1992) developed a simple
dynamic pool model which can be
solved explicitly for FMSY' In terms
of biomass per recruit, the model is
basically that of Hulme et al. (1947);
thus, body weight is taken to be a
linear function of age, with intercept
ao. The main departure from Hulme
et al. is that biomass at recruitment
age a,. is taken to be proportional to
stock biomass raised to a power q
(Cushing 1971). With these specifica­
tions, sustainable yield Y(F) can be
written

Exploiting a stock at the fishing mor­
tality rate (F) associated with max­
imum sustainable yield (MSY) is a
common fishery management strate­
gy. For the most part, three simple
propositions are sufficient to justify
this strategy: (1) The stock exhibits
a sustainable yield determined by the
fishing mortality rate, (2) more sus­
tainable yield is always preferable to
less, and (3) the parameters underly­
ing the stock's dynamics are known
with certainty. However, parameters
governing stock dynamics are typi­
cally not known with certainty, and
in such cases it is possible to demon­
strate that the appropriate F value
may be less than the value corre­
sponding to MSY (FMSY)'

The approach to be used in this
demonstration is taken from Baye­
sian decision theory (e.g., Raiffa
1968, DeGroot 1970). Early applica­
tions of Bayesian theory to fisheries
problems were presented by Roths­
child (1972), Lord (1973, 1976),
Walters (1975), and Walters and Hil­
born (1976). Of the many more recent
applications, those presented by Lud­
wig and Walters (1982), Clark et al.
(1985), and Walters and Ludwig
(1987) bear most closely on the pres­
ent study.

For simplicity, it will be assumed
here that stock dynamics are deter­
ministic but governed by parameters
which may be imprecisely estimated.
This approach is distinct from the
more common one of assuming that
stock dynamics are the product of a
deterministic system (with param-

Manuscript accepted 4 June 1992.
Fishery Bulletin. U.S. 90:561-573 (1992).

Abstract. - A simple dynamic
pool model is used to examine the
problem of stock-recruitment param­
eter uncertainty from a Bayesian
perspective. Probabilities associated
with different parameter values are
used to weight the losses (i.e., oppor­
tunity costs to society) associated
with any given fishing mortality
rate. By choosing appropriate forms
for the loss and probability density
functions, the model is shown to re­
sult in an analytic solution. Because
this solution gives the fishing mor­
tality rate that maximizes the ex­
pected value of the logarithm of sus­
tainable yield, it is denoted FMELSY'
The solution is a monotone-decreas­
ing function of parameter uncertain­
ty, converging on the fishing mortal­
ity rate corresponding to maximum
sustainable yield as the degree of
uncertainty approaches zero. As an
empirical illustration, the model is
applied to the eastern Bering Sea
stock of rock sole Pleu,ronectes bi­
lineatus.
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- (q+l) K"+I+ V(q+l)2K"2 + (6q-2)K" + 1
-...:....:....---.:--------'-=--'-------=---- - 1,

2q

where F'MBY =FMSy/M.
A common rule of thumb is that F'MSY should equal

1. The locus of parameter values for which this rule
holds precisely is given by

Cushing exponent q is constrained to fall between 0
and 1. In the limiting case of q=0, recruitment is con­
stant, while in the other limiting case of q= 1, recruit­
ment is proportional to biomass.

Differentiating Equation (1) with respect to F and
setting the resulting expression equal to zero gives the
following equation for FMSY:

F'MSY =

" 1K = - - 2.
q

(2)

(3)

where L[z(F, q)] represents the losses resulting from
selection of a particular value of F given a particular
value of q, and E{L[z(F, q)]} is the expected value of
L[z(F, q)] (the "risk," DeGroot 1970). The minimum
value of E {L[z(F, q)]} is referred to as the "Bayes risk"
(DeGroot 1970). The integral is taken over the inter­
val 0 to 1 because the Cushing stock-recruitment rela­
tionship constrains q to that range.

The Bayes decision can be derived by differentiat­
ing E {L[z(F, q)]} with respect to F and solving for the
value that sets the derivative equal to zero. The valid­
ity of this procedure requires that all parameter values,
including those describing P(q), remain constant into
the future. The solution corresponding to such an
assumption is sometimes known as a "myopic Bayes"
solution (Ludwig and Walters 1982, Mangel and Clark
1983, Mangel and Plant 1985, Parma 1990). A more
general alternative is to allow for the possibility that
parameter estimates will be updated in the future,
but this approach is vastly more difficult (Clark et al.
1985, Mangel and Plant 1985, Walters and Ludwig
1987).

Analyzing the model
In a Bayesian framework

Parameter estimates in any model are by definition
associated with some degree of uncertainty. For ex­
ample, parameters governing the stock-recruitment
relationship are particularly difficult to estimate
precisely (Larkin 1973, Paulik 1973, Ludwig and
Walters 1981, Walters and Ludwig 1981 and 1987,
Shepherd 1982, Clark 1985, Clark et al. 1985, Roths­
child and Mullen 1985, Shepherd and Cushing 1990).
In the presence of such uncertainty, a Bayesian ap­
proach would use the probabilities associated with
different parameter values to weight the losses (i.e.,
opportunity costs to society) associated with choosing
a particular fishing mortality rate. Following similar
studies by Ludwig and Walters (1982), Clark et al.
(1985), and Walters and Ludwig (1987), the present
analysis will focus on the uncertainty surrounding a
single parameter, in this case the stock-recruitment
exponent q. This uncertainty takes the form of a prob­
ability density function (pdf) P(q) which describes the
relative credibility of alternative q values.

To simplify notation, define z(F, q) as the ratio of
Y(F) to MSY for an arbitrary value of q drawn from
P(q). Then, the "Bayes decision" (DeGroot 1970) is the
value of F that minimizes

1

E{L[z(F, q)]} = h L[z(F, q)] P(q) dq, (4)

Minimizing risk under
a logarithmic loss function

Of course, specification of the functions Land P is
crucial to this problem. Following Lord (1976) and Lud­
wig and Walters (1982), one possible choice is to assume
that L is a linear function of z(L(z)=I-z). Another
common form is the quadratic L(z)=(I-z)2, which has
been used in the fisheries literature by Walters (1975),
Hightower and Grossman (1987), and Charles (1988).
One of the oldest alternatives is the logarithmic loss
function, L(z)= -In(z), dating back to the work of Ber­
noulli in 1738 (transl. 1954). Logarithmic loss (or, con­
versely, utility) seems first to have been used in the
fisheries literature by Gleit (1978), followed by Lewis
(1981, 1982), Mendelssohn (1982), Opaluch and Bock­
stael (1984), Ruppert et al. (1984, 1985), Deriso (1985),
Walters (1987), Walters and Ludwig (1987), Getz and
Haight (1989), Hightower and Lenarz (1989), High­
tower (1990), Parma (1990), and Parma and Deriso
(1990).

Linear, quadratic, and logarithmic loss functions are
compared in Figure 1. As Figure 1 indicates, the
logarithmic loss function corresponds to a "preserva­
tionist" viewpoint, in which extinction of the stock is
absolutely unacceptable (i.e., the loss corresponding to
extinction is infinite). Because the logarithmic loss func­
tion is clearly identifiable as a risk-averse alternative
function (see Discussion), it is a good candidate for il­
lustrating how a Bayesian approach can differ from
more traditional approaches which do not incorporate
uncertainty in an explicit fashion.
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To incorporate the logarithmic loss concept into the model, first note that Equation (1) allows z(F, q) to be written

(5)

For an arbitrary value of q, the (logarithmic) loss associated with a given choice of F is thus

2In(1+F'MSY) - In(1+K"+F'Msy) 21n(1+F') - In(1+K"+F')
L[z(F, q)] = In(F'MsY) - - In(F') + . (6)

1-q 1-q

Substituting Equation (6) into Equation (4), the risk can be written

I I ( 2 In(1+F') - In(1+K" +F'»)
_ P(q) In(F') - dq.

o 1-q
(7)

From Equation (2), it is clear that F'MSY involves only K" and q. Thus, regardless of the form of P(q), the first
integral on the right-hand side of Equation (7) is independent of F. Therefore, the problem of finding the Bayes
decision is equivalent to minimizing the second integral on the right-hand side of Equation (7). Remembering that

the integral (taken over the interval 0 to 1) of a cons­
tant multiplied by P(q) is equal to the constant itself,
the following proxy objective function is obtained:

Figure 1
Three possible loss functions. Loss, or relative utility foregone,
is plotted against the ratio ofY(F)/MSY for quadratic, linear,
and logarithmic loss functions.

E l {L[z(F, q»)} = -In(F') +

1 P(q)
[2In(1+F') - In(1+K"+F')] J

o
1-q dq. (8)

Incorporating a beta
probability density function

The next step in determining the Bayes decision is to
select a form for the pdf P(q). Bayesian decision theory
frequently makes use of the beta family of pdfs (e.g.,
DeGroot 1970, Holloway 1979). The beta distribution
would seem to be a natural candidate for P(q), since
it constrains q to the necessary (0,1) range. In its
standard form, the beta distribution can be written
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(
r(a+fJ) )P(q) = qa-l (l-q)fJ-l,

r(a) r(fJ)
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(9)

where a and fJ are positive constants and r(·) is the gamma function, which, except for r(1)= 1, can be described
in terms of the recursion formula

r(a) = (a-I) r(a-l).

By Equations (9) and (10), then, the integral in Equation (8) can be evaluated as follows:

I IP(q) ( r(a+fJ) ) II -1 fJ-2 ( r(a+fJ) ) (r(a) r W-l»)- dq = qa (1- q) dq =
o l-q r(a) rw) 0 r(a) r(fJ) r(a+fJ-l)

= (r(fJ-1») ( r(a+fJ) ) = a+ fJ -l.
r(fJ) r(a+fJ-l) fJ-l

Substituting Equation (11) into Equation (8) then gives

, [2In(I+F') - In(I+K"+F')] (a+fJ-l)
E1{L[z(F, q)]} = - In(F ) + .

fJ-l

(10)

(11)

(12)

Differentiating Equation (12) with respect to F' and setting the resulting expression equal to zero yields the
quadratic expression

aF'2 + [K"(2a+fJ-l) + a - fJ + 1] F' - (fJ-l) (K" + 1) = O. (13)

Before solving Equation (13), it would be helpful to cast the solution in terms of parameters which are more
intuitive than a and fJ, for example the mean and variance of P(q). The beta distribution has mean m and variance
v as follows:

a
m=--

a+fJ
and

afJ
v=------

(a+fJ)2 (a+fJ+ 1)
(14) and (15)

Conversely, Equations (14) and (15) can be solved simultaneously to describe a and fJ in terms of m and v:

and
(
m(l-m) )

fJ = v-I (1- m). (16) and (17)

Unlike the normal distribution, the variance of the beta distribution exhibits a maximum possible value for a
given mean. Remembering that a and fJ are constrained to be positive, the maximum possible value of v can be
derived from either Equation (16) or Equation (17) by setting the left-hand side equal to 0 and solving for v. This
exercise results in a maximum v equal to m(l- m). Thus, a and fJ can be written in terms of the mean and a scaled

variance v' (= v ) as follows:
m(1-m)
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and {j = (:' - 1) (1- m). (18) and (19)

For a given set of K", m, and v' values, Figure 2 shows the risk (depicted by the area under a particular curve)
associated with three possible F' values.

Fishing mortality at maximum expected log-sustainable yield

Substituting Equations (18) and (19) into Equation (13) and solving for F' gives the value that minimizes risk.
Because of the form used for the loss function, this process is equivalent to finding the level of F' that maximizes
the expected value of the logarithm of sustainable yield. It is thus convenient to refer to this value as F'MELSY
(for "maximum expected log sustainable yield"), which for this particular model can be written

F' _ [(m+2) K" -2] v' - (m+ 1) K" + 1 + Vk2 v'2 - k1 v' + ko
MELSY - 2m(1-v') - 1, (20)

where k2 = (m+2)2 K"2 + (12m-8) K" + 4,
k1 = (2m2+6m+4) K"2 + (18m-8) K" + 4, and
ko = (m+ 1)2 K"2 + (6m-2) K" + 1.

Figure 3 illustrates how F'MELSY varies with K", m, and v'. A few special cases are of particular interest. For
example, when q is known with certainty, Le., m=q and v' =0, Equation (20) reduces to Equation (2). Equation
(2) is thus the "certainty equivalent" solution (Ludwig and Walters 1982). The ratio between FMELSY and FMSY
is illustrated in Figure 4. Differences in K" tend to have less influence on this ratio than differences in either
m or v'.

Other important special cases of Equation (20) include the limits as K" approaches zero and infinity, which are
shown respectively below:

1-m(1-v') - 2v'
lim F'MELSY = -------
K"-O m(l- v')

and
1-m(1-v') - 2v'

lim F'MELSY =
K'-+00 l+m(l-v') - 2v'

(21) and (22)
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Figure 2
Risk under different F levels. The area under a curve is the
risk associated with the F level that defines the particular
curve. Parameter values used to generate these curves were
K"=2.5, m=O.2, and v'=1I11.

Figure 3
Values of F'MELSY resulting from different combinations of
parameter levels. F'MELSY tends to decrease as K", m, or v'
increases.
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FIgure 4
Ratio of F'MELSY to F'MSY under different combinations of
parameter levels. The ratio tends to decrease as K" decreases
or as m or v' increases.

Equation (20) also implies that F'MELSY falls to zero
whenever v' reaches a critical value v'0 defined as

FIgure 5
Limiting values of v'. The solid curve shows v'o. the locus at
which F'MELSY = O. The dashed curve shows v\, the locus
limiting the parameter subspace for which F'MELSY can ex­
ceed 1. For (m, v' ) combinations below the V'I curve, F'MELSY
can take any value, depending on K". For (m, v' ) combinations
between the two curves, F'MELSY can range between 0 and I,
again depending on K". For (m, v') combinations on or above
the v'o curve, F'MELSY = O.

By Equation (19), v'o corresponds to a (3 value of 1.
Whenever (3<'1, the right-hand tail of the beta distribu­
tion fails to reach zero, implying a non-zero probabil­
ity that q =1. When q =1, any positive F value causes
the stock to go extinct. Given the preservationist at­
titude implicit in the logarithmic loss function, any
possibility of extinction is unacceptable, so F'MELSY
drops to zero in this case. Note that F'MELSY is never
positive for values of v' greater than 0.5.

Just as Equation (2) could be solved to determine the
locus of parameter values under which F'MSY takes on
the special value of 1 (Eq. 3), Equation (20) can be
solved to determine the following locus of parameter
values under which F'MELSY =1:

I-m
v'o = --.

2-m
(23) Under Equation (3), F'MSY could exceed 1 only if q

were less than 0.5. While Equation (25) implies essen­
tially the same property (replacing F'MSY with F'MELSY
and q with m), it adds a similar restriction on v', namely
that F'MELSY can exceed 1 only if v' is less than 0.5.
[Note that this is a weaker version of the restriction
implied by Equation (23). Equations (23) and (25) are
compared in Figure 5.]

Biomass at MSY compared
with biomass at MELSY

Dividing Equation (1) through by F gives equilibrium
stock biomass. By substituting Equations (20) and (2)
into this expression and setting q =m, the ratio of stock
biomass at MSY to stock biomass at MELSY is given
by

In the certainty equivalent case, Equation (24)
reduces to Equation (3). As K" approaches zero, Equa­
tion (24) defines an upper limit on v' (V'l) for the
special case where F'MELSY =1:

K"
1-2v'

m(1-v')
- 2. (24)

B(FMSY )

B(FMELSY)

1

[(F'~ELSY+l)2 ( ~"+~'MSY+l )]l-m,
F MSY + 1 K +F MELSY + 1

(26)

I-2m

2-2m
(25)

with limits
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. (B(FMSY»)hm =
K·...O B(FMELSY)

1

(
1-2~') I-m

I-v
and

1

(
(1 +m) (1- 2v') ) 1- m.

(l+m)(I-v') - v'
(27) and (28)

Equations (26-28) decline from a value of 1 at v' =0 to a minimum at v' =v'o. The minimum value depends on
K" and m, but is never greater than 1/e.

Estimating the parameters of the beta distribution

To fit the Cushing stock-recruitment curve to a set of n stock-recruitment data points, it seems reasonable to
assume the following model:

(29)

where Xi represents the natural logarithm of the ith stock biomass datum, Yi represents the natural logarithm
of the ith recruitment datum (lagged according to the age of recruitment), p = In(p), and E:i is an independent error
term distributed as N(0,02).

Press (1989) presented a Bayesian approach to estimating the parameters of the pdf of q using Equation (29)
as the underlying model. The following paragraphs summarize this presentation, which begins by rephrasing the
problem in the form of Bayes' theorem:

h(q,p,o I x, y) « (!J fey; I "',q,P, 0)) g, (q) g,(p) g,(o), (30)

where x is the vector (Xl, ... , xn )'; y is the vector (Yl, ... , ynY; h(q,p,o I x, y) represents the posterior pdf
of the parameters q, p, and 0; f(Yi I xj,q,p,o) represents the conditional pdf of Yi given the observed value of Xi
and any particular values of q, p, and 0; and gk) represents the prior pdf of the jth parameter.

Given the assumptions implicit in Equation (29), f(Yi I xj,q,p,o) can be written

exp (- (Yi - P- qXi)2)
202

f(Yi I Xj,q,p,o) = -----'---------'-
V2n0 2

(31)

A special case of interest is the one in which the gj(') are all "vague" (also called noninformative or indifference)
priors. These are pdfs which reflect indifference regarding the probability of alternative parameter values. Press
(1989) treated gl(q) and g2(P) as constants, implying that all values on the real line are equally likely in the prior
distribution. Since 0 is constrained to be positive, however, Press set g3(0)= 1/0, reflecting a uniform prior
distribution for In(o).

Using Equation (31) and the priors specified by Press (1989), Eq. (30) gives a straightforward solution. The
classical least-squares estimates of q and p (q and p, respectively) obtain as the maximum-likelihood estimates.
In their posterior pdf, q and p jointly follow a bivariate Student's t distribution, so that marginally the posterior
pdf of q, h1(q I x, y), follows a univariate 3-parameter t distribution with n-2 degrees of freedom:

r(n;l)
hj(q I x,y) = -------'--------=---------

(n-2) (q-q)2 )n-lr _. n(n-2) S2q 1 + ---
2 (n-2) s~

(32)
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where s~ is the estimated variance of q given by

n

~ (Yi-P-qXj)2
j=l

s~ = -------
n

(n-2) ~ (Xj-X)2
i=l

(33)

1f
o

(q_m)2 hl(q I x,y) dq

v =
1f hl(q I x,y) dq

o

(35)

For the present application, the solution given by
Press (1989) needs to be modified in only one respect.
His suggested form for gl(q) implies a uniform distri­
bution over the entire real line, whereas here P(q) has
been specified a priori to be zero for all values less than
oor greater than 1. Given Equations (30) and (31), this
implies that the suggested uniform shape for gl(q)
should be truncated outside the range 0 to 1. This in
turn implies that hl (q I x,y) should also be truncated
outside the range 0 to 1 (and rescaled appropriately).

Strictly speaking, then, P(q) follows a truncated t
distribution in this approach, rather than the hypothe­
sized beta. However, a beta distribution can be made
to approximate the truncated t by solving for m and
v as follows:

and

1f
o

q hl(q I x,y) dq

m=
1f

o
hl(q I x,y) dq

(34)

Applying the model to rock sale

As an illustration of the approach suggested above, the
model can be applied to the eastern Bering Sea stock
of rock sole PleurfYYI.ectes bilineatus. This stock is ex­
ploited by a multispecies flatfish fishery, and is also the
target of an important roe fishery (Walters and Wilder­
buer 1988).

The parameters to be estimated are K", m, and v'.
Thompson (1992) estimated K" for this stock at a value
of 3.279, and described a set of stock and recruitment
data (n= 7) which can be used to estimate m and v'. Fit­
ting Equation (29) to these data gives q= 0.235 and
s~ = 0.114 (Fig. 6). Substituting these parameters into
Equations (34) and (35) gives m=0.369 and v=0.057,
with v' =0.243. The relationship between the truncated
t distribution defined by these values and the beta ap­
proximation is shown in Figure 7 (R2=0.97).

With parameter values K" =3.279, m = 0.369, and
v' = 0.243, Equation (20) gives F'MELSY = 0.365. Multi­
plying through by M (set at 0.2 by Walters and Wilder­
buer 1988) gives F'MELSY = 0.073. Substituting m for
q in Equation (2) yields F'MSY =0.607, or FMSY =0.121.
This value of FMSY differs somewhat from the value
of 0.176 given by Thompson (1992), which was based
on the least-squares estimate of q (q) instead of the
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Figure 6
Stock-recruitment data and curve for eastern Bering Sea rock
sole Pleuronectes bilineatus. Age-3 biomass (lagged 3 yr) is
plotted against stock biomass for the years 1979-88. The curve
is the least-squares fit.
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Figure 7
Comparison of truncated t and beta pdfs for the stock­
recruitment exponent q in the eastern Beri,ng Sea rock sole
Pleu,'onec.te-s bilineatu.s example.
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Bayesian estimate (m). These two FMSY values bracket
the value of 0.155 which Walters and Wilderbuer (1988)
derived from a surplus production model. Regardless
of which FMSY value is chosen, however, it exceeds
FMELSY by a significant amount.

Discussion

Evaluation of assumptions

The approach described here consists of three main
components: the basic model represented by Equation
(1), the logarithmic loss function, and the beta form for
P(q). These components were chosen in part because
they are tractable, making possible the analytic solu­
tion for F'MELSY given by Equation (20). In addition,
each has some degree of theoretical support, as de­
scribed below.

The basic model The basic model was evaluated by
Thompson (1992). In brief, the model includes terms
for all of the requisite features of dynamic pool models
(recruitment, growth, natural mortality, fishing mor­
tality). The distinguishing features of the model (linear
growth and a Cushing stock-recruitment relationship)
satisfy the principal theoretical requirements for
growth and stock-recruitment functions given by
Schnute (1981) and Ricker (1975), respectively. Al­
though the basic model is a simple one, it approximates
more complicated models fairly well under a wide range
of parameter values.

Logarithmic loss function The logarithmic loss func­
tion may require a bit more discussion. As mentioned
earlier, this loss function is only one of several pos­
sibilities, two of the other most-common being the
linear and quadratic forms. The principal argument
against the linear loss function is that it implies strict
risk neutrality, whereas most individuals tend to be at
least somewhat risk-averse. Thus, if fishery managers
tend to be risk-averse, a linear loss function would be
inappropriate, except over a narrow range of yield
values.

In contrast, the quadratic loss function implies a
degree of risk aversion. In addition, the quadratic form
has properties which prove convenient for a number
of statistical applications. However, it has also been the
subject of substantial criticism (Pratt 1964, Samuelson
1967, Box and Tiao 1973). Although the quadratic loss
function does fall into the "risk-averse" category, this
functional form manifests its risk aversion somewhat
perversely by exhibiting increasing absolute risk aver­
sion (Pratt 1964). In other words, a fishery manager
using a quadratic loss function would be less willing to
take risks as yields became higher.

The logarithmic loss function is another risk-averse
alternative. It can be described as a special case of the
isoelastic marginal loss function defined by L(z)=
(1-z+)/~, where +>0 (the logarithmic case being ob­
tained in the limit as ~ approaches zero). Unlike the
quadratic loss function, isoelastic marginal loss func­
tions exhibit decreasing absolute risk aversion (Pratt
1964). Isoelastic marginal loss functions also display
the convenien~property of constant relative risk aver­
sion R(z), defined as -zL"(z)/L'(z) (Pratt 1964). Spe­
cifically, R(z)=1-~ for the isoelastic marginal loss
family. The logarithmic case, where R(z)= 1, thus
represents a clear risk-averse alternative to the risk­
neutral linear loss function, where ~ = 1 and R(z) =O.

The fact that the logarithmic loss function tends
toward negative infinity as the resource approaches ex­
tinction may be viewed as problematic by some. On the
other hand, Smith (1985) views this behavior as a re­
quisite characteristic for any loss function to be used
in the context of renewable resources, arguing that it
"introduces a useful conservation motive into the deci­
sion making process." Opaluch and Bockstael (1984)
go even further, stating, ·'It is well known that the log
function exhibits the best properties of the simple func­
tional forms. . .."

Beta probability density function The principal
justification for using the beta pdf to describe P(q) is
that the beta is a natural choice for the pdf of any con­
tinuous variable which is constrained to fall within the
oto 1 range. The fact that it allows for an explicit solu­
tion to Equation (7) is another argument in its favor.

Unfortunately, the method presented here for esti­
mating the parameters of P (q) is based on a model
(Press 1989) which yields a truncated t distribution,
not a beta distribution. If this model is accepted as a
true description of reality, then the beta form for P(q)
is only an approximation. Of course, most functional
forms used in modeling are only approximations, so the
question is whether the advantages of increased tract­
ability provided by the beta distribution outweigh any
attendant losses of accuracy. Holloway (1979) argues
in the affirmative after noting the difficulty of identi­
fying natural processes which yield the beta distribu­
tion as a formal result.

In general, the effectiveness of Bayes decisions is
relatively insensitive to small changes in the assumed
pdf (DeGroot 1970). This being the case, the question
really is whether the difference between the truncated
t distribution and the beta approximation is typically
small. To assess the magnitude of this difference, the
goodness-of-fit between the truncated t and beta dis­
tributions was examined for a wide range of n, q,
and s~ values (Fig. 8). Note that R2>0.95 for a wide
range of parameter values, indicating that the loss of
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accuracy resulting from the beta approximation is often
small.

Another fact to keep in mind is that the model pre­
sented by Press (1989) is only one possibility. Despite
the pessimism conveyed by Holloway (1979), it is con- Comparison with previous studies

Of the many previous applications of Bayesian decision
theory to fisheries, the studies by Ludwig and Walters
(1982), Clark et al. (1985), and Walters and Ludwig
(1987) are most closely related to the present work. The
various features of the four approaches are outlined
in Table 1. The three previous studies exhibit certain
common features which distinguish them from the
present study, namely: (1) use of a discrete time scale;
(2) inclusion of an explicit adaptive management strate­
gy; (3) inclusion of environmental stochasticity as well
as parameter uncertainty; (4) inclusion of a positive dis­
count rate in the objective function; (5) assumption of
a normal form for the pdf of the uncertain parameter;
and (6) inability to derive an exact analytic solution,
even in the myopic case (except for one special instance
considered by Clark et al.). The present study is also
the only one of the group which includes both a
biomass-based model and a risk-averse loss function.

Ludwig and Walters (1982) found that the deter­
ministic optimum escapement level can be less than half
the value of the Bayesian solution. Although the con­
tinuous form of the model used in the present study
makes it difficult to talk about escapement per se,
equilibrium stock size might serve as a suitable proxy

ceivable that other models could yield the beta distribu­
tion as an exact result.

/

R2
c 0.95

\.

Figure 8
Loci of parameter values under which a beta approximation
to the truncated t distribution gives an R 2 value of 0.95. R~

was calculated by comparing the two distributions at q values
of 0.01, 0.02, ... , 0.99. For n = 5, parameter combinations
lying to the interior of the two curves correspond to R 2

values <0.95. For n = 10, R 2 values <0.95 correspond to
parameter combinations lying above the curve.

o.'I,l;m.Ie' w,;ao" of ,

0'[ ".~

::r
0.1 1

J-=-------=--',-'--'---'--'---------...----'---"---'---'>=--'-=~---!

Table 1
Comparison of four studies describing Bayesian approaches to fishery management.

Ludwig and Walters Clark et al. Walters and Ludwig
Feature (1982) (1985) (1987) This study

Time scale discrete discrete discrete continuous
Yield metric numbers biomass numbers biomass
Adaptive strategy included yes yes yes no
Age structure included no (discrete generations) yes no (discrete generations) yes
Discounting included yes yes yes no
Harvesting costs included no yes no no
Stochasticity included yes yes yes no
Loss function linear linear logarithmic logarithmic
Growth function none isometric von Bertalanffy none linear
Stock-recruitment function Ricker (1954) a) Cushing Cushing Cushing

b) stock-independent
c) linear-threshold

Uncertain parameter Ricker exponent a) In (Cushing multiplier) Cushing exponent (q) q
b) mean In (recruitment)
c) mean In(recruitment)l

Pdf normal normal normal beta
Analytic solution obtained no case (b) (myopic only) approximate~ (myopic only) yes

IOnly recruitment data from stock sizes above the threshold were used to calculate the mean.
2 Approximate solution valid only for pdfs with variance <0.01.
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for comparison with the results of Ludwig and Walters.
As Equations (26-28) indicate, a variety of parameter
combinations allow for B(FMSY) to be less than half of
B(FMELSY)' Since the results presented by Ludwig
and Walters (1982) were derived from a numbers-based
model, Equation (27) is particularly relevant. Under
this equation, a v' value greater than 1/3 is sufficient
to guarantee that the stock size at MSY will be less
than half the stock size at MELSY, regardless of the
value of m. At values of m>0.5, a v' value of 0.227 is
sufficient.

Clark et al. (1985) found that the relationship be­
tween the myopic Bayes and certainty-equivalent solu­
tions depended on the model used. In the special case
where recruitment is independent of stock size, for
example, they found that the myopic Bayes solution
always exceeded the certainty equivalent solution. For
the same model, the authors also found that the myopic
Bayes solution always increased with the level of U!Jce~­
tainty. These results are precisely the opposite of those
obtained in the present study, where FMELSY is always
less than F MSY and decreases monotonically with v'.
In their "full cohort model" with a stock-recruitment
relationship, however, Clark et al. (1985) obtained
results similar to those of the present study. In one
example, the myopic Bayes solution prescribed a
30-50% reduction in F relative to the certainty­
equivalent solution. Using yet another model, Walters
and Ludwig (1987) also found that the myopic Bayes
solution was a monotone-decreasing function of
uncertainty.

Conclusion

This paper describes an approach for treating the prob­
lem of parameter uncertainty in a systematic fashion.
Although fisheries are often managed as though stock
parameters are known with certainty, it would be
preferable to develop a management approach more
consistent with the fact that such certainty is the ex­
ception rather than the rule. Such an approach was
developed here in the context of Bayesian decision
theory. When applied to the particular model pre­
sented, this approach indicates that the optimal fishing
mortality rate FMELSY (Eq. 20) is always less than
FMSY (Eq. 2) except in the limiting case where q is
known with certainty (Fig. 4).

This result provides formal support for the intuitive
conclusion (e.g., Kimura 1988) that fishing mortality
should be strongly constrained when the stock-recruit­
ment relationship is uncertain. Similarly, Equation (25)
indicates that if recruitment is highly dependent on
stock size (specifically, if m exceeds 0.5), FMELSY will
always be less than the natural mortality rate.

The rock sole example illustrates the basic con­
servatism of the FMELSY approach. In this example,
FMELSY was less than FMSY by about 40%. Given that
neither the FMSY value (0.121) nor the fit from the
stock-recruitment regression (Fig. 6) was atypical of
groundfish stocks, the ratio between FMELSY and FMSY
in this example provides a practical illustration of the
extent to which an explicit accounting for uncertainty
can influence management strategy. The magnitude of
the effort reduction prescribed in this example is
similar to results described by Ludwig and Walters
(1982) and Clark et al. (1985). The confirmatory nature
of these studies may suggest that the conventional
wisdom regarding optimal exploitation rates should be
reexamined. At the very least, the FMELSY approach
provides a low-end estimate of the maximum accept­
able harvest rate and a warning against taking FMSY
estimates too seriously.

A great deal of the conservatism resulting from the
FMELSY approach as developed here stems from the
assumption that all values of q are logically possible,
despite the fact that a q value of 1 results in extinction
under any level of fishing. One alternative might be to
examine q in the context of life-history theory, to deter­
mine if it is possible to justify some other upper limit
on the logically permissible range. A related alternative
would be to use a nonuniform prior in estimating P(q).
The assumption of a uniform prior may be overly
pessimistic, since fishery biologists often have an in­
tuitive feel for stock-recruitment parameters, even in
the absence of data for a particular stock. Such infor­
mation could be used to define an alternate prior pdf.
Another possibility would be to establish an empirical
prior based on the results of other stock-recruitment
studies, but this would likely require a fairly elaborate
weighting scheme so that stock-recruitment param­
eters from the most dissimilar stocks or environments
would have the least influence on the form of the
resulting pdf.

An additional factor which may add to the conser­
vatism of the FMELSY strategy as developed here is
the use of the myopic Bayes solution rather than an
actively adaptive solution. An actively adaptive solu­
tion would attempt to anticipate and make use of
changes in available information resulting from alter­
native management actions (e.g., Walters and Hilborn
1976, Smith and Walters 1981, Ludwig and Walters
1982, Ludwig and Hilborn 1983, Clark et al. 1985,
Walters 1986, Milliman et al. 1987, Walters and Lud­
wig 1987, Parma 1990, Parma and Deriso 1990). How­
ever, myopic Bayes (or similar) solutions often perform
nearly as well as their actively adaptive counterparts
(Mendelssohn 1980, Walters and Ludwig 1987, Parma
1990, Parma and Deriso 1990), and if the myopic Bayes
solution is reestimated each year, the result is a
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passively adaptive strategy which is asymptotically
optimal over time (Walters 1987). Most important for
the purposes of the present study, though, is the fact
that the myopic Bayes solution is computationally much
simpler than the actively adaptive solution.

In conclusion, it should be stressed that while the ap­
proach suggested here was developed in the context
of a particular model and particular loss and probability
density functions, this development was meant primar­
ily to illustrate the approach, not to limit it. More
sophisticated applications-utilizing alternative as­
sumptions, functional forms, and solution techniques­
are certainly to be encouraged. In particular, future
research might incorporate recruitment stochasticity,
positive discount and cost rates, additional objective
function components (e.g., yield variability), and uncer­
tainty in other parameters and variables (e.g., the
natural mortality rate, growth rate, and stock size).
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